13.3

Angles and Polygons

Goal: Find measures of interior and exterior angles.

Interior The inside angles of apolygon. The angle:

Exterior "Outside" angles - extend the side of the angle: Polygon = its adjacent to the interior angle.

Measures of Interior Angles of a Convex Polygon

The sum of the measures of the interior angles of a convex n-gon is given by the formula $(n-2) \cdot 180^{\circ}$.

The measure of an interior angle of a regular *n*-gon is given by $(n-2) \cdot 180^{\circ}$

Measures of Interior Angles of a Convex Polygon

The sum of the measures of the interior angles of a convex n-gon is given by the formula $(n-2) \cdot 180^{\circ}$.

The measure of an interior angle of a regular n-gon is given by the formula $\frac{(n-2) \cdot 180^{\circ}}{n}$.

Example 1

Finding the Sum of a Polygon's Interior Angles

Find the sum of the measures of the interior angles of the polygon.

Solution

For a convex hexagon, n =

$$(n-2) \cdot 180^{\circ} = (-2) \cdot 180^{\circ}$$

$$S = (n-2) \cdot 180$$

= $(6-2) \cdot 180$
= 720°

Example 2

Finding the Measure of an Interior Angle

Find the measure of an interior angle of a regular octagon.

Solution

For a regular octagon, n = 8.

Measure of an interior angle =

Write formula.

Substitute for *n*.

$$\frac{(8-2)(180)}{8} = \frac{3}{84} = 135^{\circ}$$

1. Find the sum of the measures of the interior angles of a convex 9-gon.

$$(9-2)(180)$$

$$= 7(180)$$

$$S = 1260^{\circ}$$

2. Find the measure of an interior angle of a regular 18-gon.

$$\frac{(18-2)(186)}{18} = \frac{16(18)(10)}{18} = 160^{\circ}$$