Find $m \angle 1$ in the diagram.

An interior angle and an exterior angle at the same vertex form a straight angle.

$$m < 1 + 108^{\circ} = 180^{\circ}$$
 $-108 - 108$
 $-108 - 72^{\circ}$

3. In Example 3, find $m \angle 2$, $m \angle 3$, $m \angle 4$, and $m \angle 5$.

$$m < 1 = 72^{\circ}$$
 $m < 2 = 97^{\circ}$ $m < 3 = 55^{\circ}$ $m < 4 = 58^{\circ}$ $m < 5 = 78^{\circ}$ 360°

$$m<3-55$$
 $m<5+102=186$
 $+122=180$ $-102-102$
 $-122-122$ -78

Example 4

Using the Sum of Measures of Exterior Angles

Find the unknown angle measure in the diagram.

$$x^{\circ} + 77^{\circ} + 101^{\circ} + 132^{\circ} = 360$$

 $\times + 310 = 360$
 $-310 = 310$
 $\times = 50^{\circ}$

Each vertex of a convex polygon has two exterior angles. If you draw one exterior angle at each vertex, then the sum of the measures of these angles is 360°.

4. Five exterior angles of a convex hexagon have measures 42°, 78°, 60°, 55°, and 62°. Find the measure of the sixth exterior angle.

$$X + 42 + 78 + 60 + 55 + 62 = 360$$

 $X + 297 = 360$
 -297
 -297
 $\times = 63^{\circ}$