Functions

Function Notation:

A function can be thought of as a \qquad that assigns
 to evern innut.

Examples:

Function Operations:

Composition of functions:
Example: $\mathbf{f}(\mathbf{x})=\mathbf{2 x + 3}$ and $\mathbf{g (x)}=\mathbf{x}^{\mathbf{2}}$
" x " is just a placeholder, and to avoid confusion let's just call it "input":

$$
\begin{aligned}
& f(\text { input })=2(\text { input })+3 \\
& g(\text { input })=(\text { input })^{2}
\end{aligned}
$$

So, let's start:

$$
(g \circ f)(x)=g(f(x))
$$

First we apply f, then apply g to that result:

Examples: Let $f(x)=x^{2}, g(x)=\sqrt{x}+1, \mathrm{~h}(\mathrm{x})=2 \mathrm{x}+3$

1. $f o g(4)=f(\underline{g(4)})=f(\sqrt{4}+1)$

$$
=f(2+1)=f(3)=3^{2}=9
$$

2. $g(h(x))=g(2 x+3)$

$$
=\sqrt{2 x+3}+1
$$

3. $\begin{aligned} & f(h(x))=f(2 x+3)=(2 x+3)^{2} \\ &=4 x^{2}+12 x+9\end{aligned}$

Inverse Relations: "switch the x and y ", if the inverse is a function then it is called an inverse function

Examples:

1. Find the inverse realation from the table:

\boldsymbol{x}	0	1	2	3	4
\boldsymbol{y}	3	5	7	9	11

x	3	5	7	9	11
y	0	1	2	3	14

Is the inverse a function?
\qquad
2. Find the equation of the inverse relation $y=\frac{1}{2} x+4$
$x=\frac{1}{2} y+4$
$\left(x-4=\frac{1}{2} y\right) 2$

Is the inverse a function? \qquad
3. Verify the f and g are inverses:

$$
f(x)=x+2 ; g(x)=x-2
$$

$f(g(x))=x-2+2=X$
$g(f(x))=x+2-2=x$
$y e S$

Rates of change: Simply means slope

Slope of any line by using the slope formula between 2 points.
"Average Rate of Change" Simply means draw a line through 2 points and find the slope.
Examples:

1. Find the average rate of change of $f(x)=x^{2}+3$ on the interval $[0,2]$
$(0,3)(2,7)$

$$
\begin{aligned}
& f(0)=3 \\
& f(2)=2^{2}+3=7 \\
& \text { Averoc }=\frac{7-3}{2-0}=\frac{4}{2}=2
\end{aligned}
$$

Find the average rate of change of $f(x)=3 x^{3}$ on the interval $[-2,3]$

$$
\begin{aligned}
& f(-2)=3(-8)=-24 \\
& f(3)=3(27)=81 \\
& \text { Aroc }=\frac{81+24}{3+2}=\frac{105}{6}=17.5
\end{aligned}
$$

