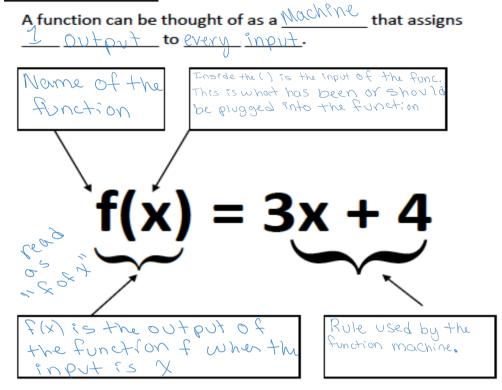
Functions

Function Notation:



Examples:

1
2. If $f(x) = 6$, find the function value for:
a. $f(-3) = 0$
b. $f(x^2) \simeq \int_{\mathcal{O}}$
4. Determine with the relation is a function:
a. $x -1 2 5 -1 $
a. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$
yes stil
b. No, does not Pass the vertical line test
c. {-1, 5), (2, 5), (3, 5) (8, 5)}

Function Operations:

Operations with Functions	
(f+g)(x) means $f(x) + g(x)$	(f-g)(x) means $f(x) - g(x)$
Example: $f(x) = 3x + 5$, $g(x) = 2x - 7$	Example: : $f(x) = 2x - 4$, $g(x) = x + 3$
3x+5+2x-7	2x - 4 - (x + 3)
5x-2	$\frac{2x-4-X-3}{X-7}$
$(f \cdot g)(x)$ means $f(x) \cdot g(x)$	$\frac{f}{g}(x)$ means $\frac{f(x)}{g(x)}$
Example: $f(x) = x + 2, g(x) = x - 3$	Example: : $f(x) = x^2 - 16$, $g(x) = x + 4$
(x+2)(x-3) (x^2-x-6)	$\frac{X^{2}-16}{X+4} = \frac{(X+4)(X-4)}{(X+4)} = \frac{X-4}{1}$

Composition of functions:

Example: f(x) = 2x+3 and $g(x) = x^2$

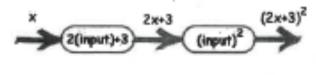
"x" is just a placeholder, and to avoid confusion let's just call it "input":

f(input) = 2(input)+3

So, let's start:

$$(g \circ f)(x) = g(f(x))$$

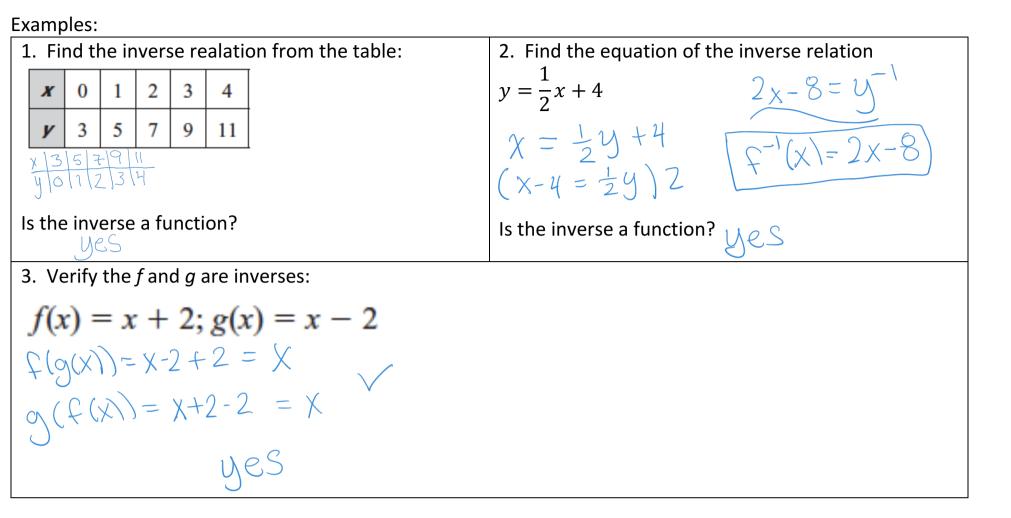
First we apply f, then apply g to that result:



(g ° f)(x) = (2x+3)2

Examples: Let
$$f(x) = x^2$$
, $g(x) = \sqrt{x+1}$, $h(x)=2x+3$
1. $fog(4) = f(g(4)) = f(\sqrt{44} + 1)$
 $= f(2+1) = f(3) = 3^2 = 9$
2. $g(h(x)) = 9(2x+3)$
 $= \sqrt{2x+3} + 1$
3. $f(h(x)) = f(2x+3) = (2x+3)^2$
 $= \sqrt{2x+3} + 1$

Inverse Relations: "switch the x and y", if the inverse is a function then it is called an inverse function



Rates of change: Simply means slope

Slope of any line by using the slope formula between 2 points.

"Average Rate of Change" Simply means draw a line through 2 points and find the slope.

Examples:

1. Find the average rate of change of $f(x) = x^2 + 3$	Find the average rate of change of $f(x) = 3x^3$ on
on the interval $[0, 2]$ $(0, 3)(2, 7)$	the interval [-2, 3]
F(0) = 3	F(-2) = 3(-8) = -24
f(0) = 3 $f(2) = 2^2 + 3 = 7$	F(3) = 3(27) = 8
$Averoc = \frac{7-3}{2-0} = \frac{4}{2} = \boxed{2}$	$Aroc = \frac{81 + 24}{3 + 2} = \frac{105}{6} = 17.5$