Functions

Function Notation:

Examples:

1. If $f(x) = 3x^2 - 4x$, find the function value for:	2. If $f(x) = 6$, find the function value for:
a. <i>f</i> (6)	a. f(-3)
b. $f(x + 2)$	b. $f(x^2)$
$(x+2), x \le 2$	4. Determine with the relation is a function:
3. If $f(x) = \begin{cases} x+2 , x \le 2\\ \frac{2}{3}x - 1, 2 < x \le 6\\ 3, x > 6 \end{cases}$	a. <u>x -1 2 5</u> y -4 8 20
find the function value for:	
a. <i>f</i> (6)	b.
b. <i>f</i> (0)	
	c. {-1, 5), (2, 5), (3, 5) (8, 5)}

Function Operations:

Operations with Functions					
(f+g)(x) means $f(x) + g(x)$	(f-g)(x) means $f(x) - g(x)$				
<i>Example:</i> $f(x) = 3x + 5$, $g(x) = 2x - 7$	Example: : $f(x) = 2x - 4$, $g(x) = x + 3$				
$(f \cdot g)(x) \text{ means } f(x) \cdot g(x)$ Example: : $f(x) = x + 2$, $g(x) = x - 3$	$\frac{f}{g}(x) \text{ means } \frac{f(x)}{g(x)}$ Example: : $f(x) = x^2 - 16$, $g(x) = x + 4$				

Composition of functions:

composition of functions.	
Example: $f(x) = 2x+3$ and $g(x) = x^2$	Examples: Let $f(x) = x^2$, $g(x) = \sqrt{x+1}$, $h(x)=2x+3$ 1. $fog(4) = f(g(4)) =$
"x" is just a placeholder, and to avoid confusion let's just call it "input":	1. $\int \partial g(4) = \int (g(4)) =$
f(input) = 2(input)+3	
g(input) = (input) ²	2. g(h(x)) =
So, let's start:	
$(g \circ f)(x) = g(f(x))$	
First we apply f , then apply g to that result:	3. $f(h(x)) =$
x 2x+3 (2x+3) ² 2(input)+3 (input) ²	3. f(n(x)) =
$(g \circ f)(x) = (2x+3)^2$	

Inverse Relations: "switch the x and y", if the inverse is a function then it is called an inverse function

Examples:

EXam	P.00.						
1. Find the inverse realation from the table:							the equation of the inverse relation
x	0	1	2	3	4	$y = \frac{1}{2}x$	+ 4
y	3	5	7	9	11		
Is the inverse a function?							verse a function?
3. Verify the <i>f</i> and <i>g</i> are inverses:							
f(x) = x + 2; g(x) = x - 2							

Rates of change: Simply means slope

Slope of any line by using the slope formula between 2 points.

"Average Rate of Change" Simply means draw a line through 2 points and find the slope.

Examples:

1. Find the average rate of change of $f(x) = x^2 + 3$ on the interval [0, 2]	Find the average rate of change of $f(x) = 3x^3$ on the interval [-2, 3]